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Abstract. The spectrum of meson and diquark excitations of dense quark matter is considered in the frame-
work of theNambu–Jona-Lasinio model with three types of massless quarks in the presence of a quark number
chemical potential µ. We investigate the effective action of meson and diquark fields both at sufficiently large
values of µ > µc ≈ 330MeV, where the color–flavor locked (CFL) phase is realized, and in the chirally broken
phase of quark matter (µ < µc). In the latter case all nine pseudoscalar mesons are Nambu–Goldstone (NG)
bosons, whereas the mass of the scalar meson nonet is twice the dynamical quark mass. In the chirally broken
phase the pseudoscalar diquarks are not allowed to exist as stable particles, but the scalar diquarks might be
stable only at a rather strong interaction in the diquark channel. In the case of the CFL phase, all NGbosons of
the model are realized as scalar and pseudoscalar diquarks. Moreover, it turns out that massive diquark exci-
tations are unstable for this phase. In particular, for the scalar and pseudoscalar octets of diquark resonances
amass value around 230 MeVwas foundnumerically. In contrast,mesons are stable particles in theCFLphase.
Their masses lie in the interval 400–500MeV for not too large values of µ > µc.

PACS. 11.30.Qc; 12.38.-t; 12.39.-x

1 Introduction

It is well known that at asymptotically high baryon
densities the ground state of massless three-flavor QCD
corresponds to the so-called color–flavor locked (CFL)
phase [1, 2]. In this phase quarks of all three flavors as
well as three colors undergo pairing near the Fermi surface
due to the attractive one-gluon exchange potential. The
properties of different collective modes, including Nambu–
Goldstone (NG) bosons, of the CFL phase were studied
already in the framework of weak-coupling QCD [3–5].
At intermediate baryon densities, related to compact star
physics, weak-coupling expansion of QCD is not applica-
ble, so the description of color superconductivity, including
the CFL phase, is more adequate in the framework of
effective theories for the low energy QCD region. In par-
ticular, since massless excitations might play an important
role in different transport phenomena, such as the cooling
processes of neutron stars etc., a different chiral type of ef-
fective theories for the pseudoscalar NG bosons of the CFL
phase are usually used (see, e.g., [6–17]).
Another effective theory approach is based on the

Nambu–Jona-Lasinio (NJL) models. Since any NJL model

a e-mail: kklim@ihep.ru

contains the microscopic quark degrees of freedom, it is
especially convenient for the investigation of dynamical
processes in dense baryonic matter. In particular, in the
three-flavor NJL model the CFL effect was already con-
sidered, e.g., in [18–25], (see also the review [26]), where
some aspects of the phase structure of dense quark mat-
ter were discussed, including the influence of the s-quark
bare mass, color and electric charge neutrality conditions,
external magnetic field, etc. In addition, in [27–31] the
properties and structure of NG bosons of the CFL phase
were considered in the framework of NJL models.
One of the most noticeable differences between color

superconductivity phenomena with three and two quark
species is that the CFL effect is characterized by a hi-
erarchy of energy scales. As was established in differ-
ent approaches quoted above, at the lowest scale lie NG
bosons, which dominate in all physical processes with en-
ergy smaller than the superconducting gap ∆. Evident
contributors at higher energy scales are quark quasipar-
ticles, which in the CFL phase have an energy greater
than ∆. However, up to now we know much less about
other excitations, whose energy and mass are of the order
of ∆ in magnitude. Among these particles are ordinary
scalar and pseudoscalar mesons, massive diquarks etc., i.e.
particles that might play an essential role in dynamical
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processes of the CFL phase. In contrast, the properties of
mesons and diquarks, surrounded by color superconduct-
ing quark matter, were already discussed in the framework
of the two-flavor NJL model [32–40].
In the present paper we are going to study just this

type of excitations of the CFL ground state, i.e. mesons
and massive diquarks, in the framework of the massless
three-flavorNJLmodel. In our previous paper [31] we have,
in particular, obtained the equations for both scalar and
pseudoscalar diquark masses in the CFL phase of the NJL
model. There, our consideration was based on the effect-
ive action, which is a generating functional for one-particle
irreducible Green functions. Now, using the same tech-
nique, we perform a numerical investigation of the diquark
masses, as well as of the masses of scalar and pseudoscalar
mesons, versus the chemical potential in the CFL phase.
Moreover, the octet and singlet structure is established
for massive mesons and diquarks (both scalar and pseu-
doscalar) in the CFL phase. In addition, the masses of
diquarks and mesons in the chirally broken quark matter
phase are also investigated.

2 NJL model and its effective action

Let us consider the following NJL model with three mass-
less quark flavors:

L= q̄
[
γν i∂ν +µγ

0
]
q+G1

8∑

a=0

[
(q̄τaq)

2+(q̄iγ5τa q)
2
]

+G2
∑

A=2,5,7

∑

A′=2,5,7

{[
q̄Ciγ5τAλA′q

] [
q̄iγ5τAλA′q

C
]

+
[
q̄CτAλA′q

] [
q̄τAλA′q

C
]}
. (1)

In (1), µ≥ 0 is the quark number chemical potential, which
is the same for all quark flavors, and qC = Cq̄t and q̄C =
qtC are charge-conjugated spinors. C = iγ2γ0 is the charge
conjugation matrix (the symbol t denotes the transposi-
tion operation). The quark field q ≡ qiα is a flavor and color
triplet as well as a four-component Dirac spinor, where
i, α= 1, 2, 3. (Roman and Greek indices refer to flavor and
color indices, respectively; spinor indices are omitted.) Fur-
thermore, we use the notation τa, λa for Gell-Mann ma-
trices in flavor and color space, respectively (a= 1, . . . , 8);

τ0 =
√
2
3 ·1f is proportional to the unit matrix in the flavor

space. Clearly, the Lagrangian (1) as a whole is invari-
ant under transformations by the color group SU(3)c. In
addition, it is symmetric under the chiral group SU(3)L×
SU(3)R (chiral transformations act on the flavor indices of
quark fields only) as well as under the baryon-number con-
servation group U(1)B and the axial group U(1)A.

1 In all
numerical calculations below, we use the following values

1 In a more realistic case, the additional ’t Hooft six-quark in-
teraction term should be taken into account in order to break
the axial U(1)A symmetry [18–25]. However, in the present
consideration we omit the ’t Hooft term, for simplicity.

of the model parameters (see, e.g., [26]): Λ = 602.3MeV,
G1Λ

2 = 2.319 and G2 = 3G1/4, where Λ is an ultravio-
let cutoff parameter in the three-dimensional momentum
space.
The linearized version of the Lagrangian (1) con-

tains the collective bosonic fields σa (x), πa (x),∆
s
AA′(x),

∆p
AA′
(x) and looks like

L̃= q̄
[
γν i∂ν +µγ

0−σaτa− iγ
5πaτa

]
q

−
1

4G1
[σaσa+πaπa]−

1

4G2

[
∆s∗AA′∆

s
AA′ +∆

p∗
AA′
∆p
AA′

]

−
∆s∗AA′

2

[
q̄C iγ5τAλA′q

]
−
∆sAA′

2

[
q̄iγ5τAλA′q

C
]

−
∆p∗
AA′

2

[
q̄CτAλA′q

]
−
∆p
AA′

2

[
q̄τAλA′q

C
]
, (2)

where here and in the following the summation over re-
peated indices a = 0, . . . , 8 and A,A′ = 2, 5, 7 is implied.
The Lagrangians (1) and (2) are equivalent, which simply
follows from the equations of motion for the bosonic fields

σa(x) =−2G1(q̄τaq) ,

∆sAA′(x) =−2G2
(
q̄C iγ5τAλA′q

)
,

∆s∗AA′(x) =−2G2
(
q̄iγ5τAλA′q

C
)
,

πa(x) =−2G1
(
q̄iγ5τaq

)
,

∆p
AA′
(x) =−2G2

(
q̄CτAλA′q

)
,

∆p∗
AA′
(x) =−2G2

(
q̄τAλA′q

C
)
. (3)

In (2)–(3) σa(x),∆
s
AA′(x) and πa(x),∆

p
AA′
(x) are scalar

and pseudoscalar fields, respectively.
Let us consider the flavor group SU(3)f = SU(3)L+R,

which is the diagonal subgroup of the chiral group. Then,
all complex scalar diquark fields ∆sAA′(x) form an (3̄c, 3̄f )
multiplet of the SU(3)c×SU(3)f group, i.e. they are a color
and flavor antitriplet. The same is true for complex pseu-
doscalar diquark fields∆p

AA′
(x), which are also the compo-

nents of an (3̄c, 3̄f ) multiplet of the SU(3)c×SU(3)f group.
Evidently, all diquarks ∆s,p

AA′
(x) have the same non-zero

baryon charge. All the real σa(x) and πa(x) fields are color
singlets. Moreover, the set of scalar σa(x) mesons is de-
composed into a direct sum of the singlet and octet repre-
sentations of the diagonal flavor group SU(3)f . The same
decomposition into multiplets is true for the set of all pseu-
doscalar πa(x) mesons. Clearly, in this case the octet is
constructed from three pions (π± and π0), four kaons (K0,
K̄0 and K±) and the eta meson (η8), whereas the singlet
(η0) corresponds to the η

′ meson.
In our previous paper [31], using the intermediate

bosonic Lagrangian (2) and the Nambu–Gorkov formalism
we have obtained in the one-fermion loop approximation
the effective action Seff of the initial model (1). In terms of
collective bosonic fields (3) it takes the following form:

Seff
(
σa, πa,∆

s,p
AA′
,∆s,p∗
AA′

)

=−

∫
d4x

[
σ2a+π

2
a

4G1
+
∆sAA′∆

s∗
AA′ +∆

p
AA′
∆p∗
AA′

4G2

]

−
i

2
TrscfxNG lnZ , (4)
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where Z is the 2×2 matrix in Nambu–Gorkov space,

Z =

(
D+, −K
−K∗,D−

)
, (5)

and the following notation is adopted:

D+ = iγν∂ν +µγ
0−Σ , Σ = τaσa+iγ

5πaτa ,

K = (∆p
AA′
+ i∆sAA′γ

5)τAλA′ ,

D− = iγν∂ν −µγ
0−Σt , Σt = τ taσa+iγ

5πaτ
t
a ,

K∗ = (∆p∗
AA′
+ i∆s∗AA′γ

5)τAλA′ . (6)

Besides of an evident trace over the two-dimensional
Nambu–Gorkov (NG) matrix, the Tr operation in (4)
stands for the trace in spinor (s), flavor (f), color (c)
as well as four-dimensional coordinate (x) spaces, corre-
spondingly. Let us suppose that parity is conserved so
that all pseudoscalar diquark and meson fields have zero
ground state expectation values, i.e. 〈∆p

AA′
(x)〉 = 0 and

〈πa(x)〉 = 0. Furthermore, since at zero s-quark mass,
ms = 0, only the competition between the chirally bro-
ken quark matter phase and the CFL one is relevant to
the physics of dense QCD (see, e.g., [2]), we permit in
the present consideration non-zero ground state expecta-
tion values only for σ0(x) and ∆

s
AA(x) fields (A= 2, 5, 7).

Namely, let 〈σ0(x)〉 ≡ σ, 〈∆sAA(x)〉 ≡∆, 〈∆
s∗
AA(x)〉 ≡ ∆

∗,
where A= 2, 5, 7, but other boson fields from (3) have zero
ground state expectation values. In the case ∆= 0, σ �= 0
quark matter is in the chirally broken phase, where the
ground state is invariant under SU(3)c×SU(3)f ×U(1)B.
If ∆ �= 0, then the CFL phase is realized in the model,
and the initial symmetry is spontaneously broken down
to SU(3)L+R+c.

2 Now, let us make the following shifts
of bosonic fields in (4): σ0(x)→ σ0(x)+σ, ∆s∗AA(x)→
∆s∗AA(x)+∆

∗, ∆sAA(x)→∆
s
AA(x)+∆ (A = 2, 5, 7), and

the other bosonic fields remain unshifted. (Obviously, the
new shifted bosonic fields σ0(x),∆

s
AA(x) etc. now denote

the (small) quantum fluctuations around the mean values
σ,∆ etc. of mesons and diquarks rather than the original
fields (3).) In this case

Z→

(
D+o , −Ko
−K∗o , D

−
o

)
−

(
Σ , K
K∗ ,Σt

)
≡ S−10 −

(
Σ , K
K∗ ,Σt

)
,

(7)

where Ko, K
∗
o , D

±
o , Σo and Σ

t
o are the corresponding

quantities (6), in which all bosonic fields are replaced by
their own ground state expectation values, i.e. σ0(x)→ σ,
πa(x)→ 0, ∆sAA(x)→∆, ∆

p
AA′
(x)→ 0 etc., and S0 is the

quark propagator matrix in the Nambu–Gorkov represen-
tation (its matrix elements Sij are given in Appendix B).
Then, expanding the obtained expression into a Taylor-
series up to second order of small bosonic fluctuations, we

2 In spite of the fact that in the CFL phase the chiral sym-
metry is also broken, the notation “chirally broken phase” is
used here and in the following for the phase without color
superconductivity.

have

Seff
(
σa, πa,∆

s,p
AA′
,∆s,p∗
AA′

)

= S(0)eff +S
(2)
eff

(
σa, πa,∆

s,p
AA′
,∆s,p∗
AA′

)
+ · · · , (8)

where

S(0)eff =−

∫
d4x

[
σσ

4G1
+
3|∆|2

4G2

]
+
i

2
TrscfxNG ln (S0)

≡−Ω(σ,∆,∆∗)

∫
d4x , (9)

S(2)eff
(
σa, πa,∆

s,p
AA′
,∆s,p∗
AA′

)

=−

∫
d4x

[
σ2a+π

2
a

4G1
+
∆sAA′∆

s∗
AA′ +∆

p
AA′
∆p∗
AA′

4G2

]

+
i

4
TrscfxNG

{
S0

(
Σ , K
K∗ ,Σt

)
S0

(
Σ , K
K∗ ,Σt

)}
, (10)

andΩ(σ,∆,∆∗) is the thermodynamic potential of the sys-
tem. Notice that the term linear in the meson and diquark
fields vanishes in (8) due to the gap equations.
The detailed investigations of the thermodynamic po-

tential, performed in our previous paper [31] for the above
accepted model parameter set, shows that at µ < µc ≈
330MeV the chirally broken quark matter phase with
SU(3)c×SU(3)f ×U(1)B symmetric ground state is real-
ized in the model (in this case ∆ = 0 and M ≈ 355MeV,
where M =

√
2/3σ is the dynamical quark mass). How-

ever, at µ > µc the CFL phase of dense baryonic matter
arises. In this phaseM = 0, and∆ varies with µ (see Fig. 2
in [31]). Below we suppose that the gap∆ is a real nonneg-
ative number.
In the following we will study the spectrum of meson/

diquark excitations both in the CFL and chirally broken
phases of the NJL model. Since particle masses are cal-
culated by the use of the corresponding Green functions,
it is necessary to put special attention to the effective ac-
tion S(2)eff (10), which is really a generating functional of the
one-particle irreducible (1PI) two-point Green functions of
mesons and diquarks both in the chirally broken and CFL
phases, namely

ΓXY (x−y) =−
δ2S(2)eff

δY (y)δX(x)
, (11)

where X(x), Y (x) = σa(x), πb(x),∆
s,p
AA′
(x),∆s,p∗

BB′
(x). (To

obtain the Green function (11) in the chirally broken phase
of quark matter (µ < µc), one should use in the expression
for the quark propagator S0 (see Appendix B), entering in
(10), M ≈ 355MeV and ∆ = 0, whereas in the CFL phase
(µ > µc) all Green functions (11) correspond to S0 with
M = 0 and values ∆ �= 0 presented in Fig. 2 of [31].) In the
following, we shall say that in the theory there is a mixing
between two different particles with corresponding fields
X(x) and Y (x), if their 1PI Green function ΓXY (x−y) is
not identically equal to zero. Now, after performing in (10)
the trace operation over two-dimensional Nambu–Gorkov
space, we obtain

S(2)eff = S
(2)
mesons+S

(2)
diquarks+S

(2)
mixed , (12)
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where

S(2)mesons =−

∫
d4x
σ2a+π

2
a

4G1

+
i

4
Trscfx

{
S11ΣS11Σ+2S12Σ

tS21Σ

+S22Σ
tS22Σ

t
}
, (13)

S(2)diquarks =−

∫
d4x
∆sAA′∆

s∗
AA′ +∆

p
AA′
∆p∗
AA′

4G2

+
i

4
Trscfx

{
S12K

∗S12K
∗+2S11KS22K

∗

+S21KS21K
}
, (14)

S(2)mixed =
i

2
Trscfx

{
S11ΣS12K

∗+S21ΣS11K

+S12Σ
tS22K

∗+S21KS22Σ
t
}
, (15)

and the Sij are the matrix elements of the quark prop-
agator matrix S0 defined in (7) (see also Appendix B).
(Some necessary explanations concerning the trace oper-
ation over coordinate space in the expressions (13)–(15)
are given in Appendix A (see (A.4))). It follows from
these formulae that the effective action (13) depends on
the mesonic fields σa(x) and πb(x) only, i.e. it is a gener-
ating functional of the two-point 1PI Green functions of
mesons. Furthermore, the effective action (14) is composed
of diquark fields only, and the mixing between mesons
and diquarks might occur, because of the effective action
(15). However, as a detailed analysis of the NJL model
(1) with three massless quarks shows, each Green func-
tion, containing mixing of mesons and diquarks, is propor-
tional to M∆. Thus, both in the chirally broken phase of
quark matter, where ∆ = 0, and in the CFL one, where
M = 0, there is no mixing between mesons and diquarks,
and so the term (15) can safely be ignored in our present
consideration.3

Finally, note that because of the traces containing an
odd number of γ5 matrices, there is no mixing between
scalar and pseudoscalar particles in the framework of the
NJL model (1), as required by parity conservation.

3 Meson masses

3.1 The case of the CFL phase

Taking into account the remarks from the previous section,
we have the following general expressions for the non-zero
two-point 1PI Green function of mesons, which are valid in
the chirally broken phase of quark matter as well as in the
CFL one (other two-point mesonic 1PI Green functions are

3 Note that if some of the current quark masses are non-zero,
then due to M �= 0 there arises a mixing between mesons and
diquarks in the CFL phase. This effect is analogous to the mix-
ing between the σ meson and the scalar diquark in the color
superconducting phase of a two-flavor NJL model with non-
zero masses of u and d quarks [33–36].

zero in the model under consideration):

Γσaσa(x−y) =−
δ2S(2)mesons
δσa(y)δσa(x)

,

Γπbπb(x−y) =−
δ2S

(2)
mesons

δπb(y)δπb(x)
, (16)

where a, b = 0, 1, 2, . . . , 8. In momentum space the zeros
of the Fourier transformations of these functions are con-
nected with meson masses.
Starting from (16), it is possible to obtain the ex-

pressions for the mesonic 1PI Green functions (a, b =
0, 1, 2, . . . , 8)

Γπaπa(z) =
δ(z)

2G1
+
i

2
Trscf

[
S11(z)γ

5τaS11(−z)γ
5τa

+S12(z)γ
5τ taS21(−z)γ

5τa

+S21(z)γ
5τaS12(−z)γ

5τ ta

+ S22(z)γ
5τ taS22(−z)γ

5τ ta
]
, (17)

Γσbσb(z) =
δ(z)

2G1
−
i

2
Trscf [S11(z)τbS11(−z)τb

+S12(z)τ
t
bS21(−z)τb

+ S21(z)τbS12(−z)τ
t
b +S22(z)τ

t
bS22(−z)τ

t
b

]
.

(18)

In (17)–(18) z = x−y, and the matrix elements Sij(z) are
presented in (B.1)–(B.4), from which the Fourier trans-
formations Sij(p) are directly seen. The corresponding
Fourier transformations Γπaπa(p) and Γσbσb(p) look like
(as an example, see the relation (A.7) from Appendix A)

Γπaπa(p) =
1

2G1
+
i

2
Trscf

∫
d4q

(2π)4

×
[
S11(p+ q)γ

5τaS11(q)γ
5τa

+S12(p+ q)γ
5τ taS21(q)γ

5τa

+S21(p+ q)γ
5τaS12(q)γ

5τ ta

+ S22(p+ q)γ
5τ taS22(q)γ

5τ ta
]
, (19)

Γ σbσb(p) =
1

2G1
−
i

2
Trscf

∫
d4q

(2π)4

×
[
S11(p+ q)τbS11(q)τb

+S12(p+ q)τ
t
bS21(q)τb+S21(p+ q)τbS12(q)τ

t
b

+ S22(p+ q)τ
t
bS22(q)τ

t
b

]
. (20)

The zeros of these functions determine the π and σ meson
dispersion laws, i.e. the relations between their energy and
three-momenta. In the present paper, we are mainly inter-
ested in the investigation of the modification of meson and
diquark masses in dense and cold quark matter. Since in
this case a particle mass is defined as the value of its energy
in the rest frame, p = 0 (see, e.g., [33–38,41, 42]), we put
p= (p0, 0, 0, 0) in the following. As a result, the calculation
of two-point 1PI Green functions is significantly simplified.
In order to perform for the case of the CFL phase in (19)–
(20) the trace operations over color and flavor spaces, we
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used the program of analytical calculations MAPLE. The
trace over spinor space and the subsequent integration over
q0, has been performed by applying the technique elabo-
rated in [33–36]. As a result, we have for the 1PI meson
Green functions with a= 1, 2, . . . , 8

Γ σaσa(p0) =
1

2G1
+A−B , Γπaπa(p0) =

1

2G1
+A+B ,

(21)

where

A=

∫
d3q

(2π)3

⎧
⎨

⎩
28
(
E+∆+E

−
∆

) [
E+∆E

−
∆+E

+E−
]

3E+∆E
−
∆

[
p20−

(
E+∆+E

−
∆

)2]

+
4
(
E+2∆+E

−
∆

) [
E+2∆E

−
∆+E

+E−
]

3E+2∆E
−
∆

[
p20−

(
E+2∆+E

−
∆

)2] +

+
4
(
E+∆+E

−
2∆

) [
E+∆E

−
2∆+E

+E−
]

3E+∆E
−
2∆

[
p20−

(
E+∆+E

−
2∆

)2]

⎫
⎬

⎭
, (22)

B =

∫
d3q

(2π)3

⎧
⎨

⎩
8∆2

(
E+∆+E

−
∆

)

3E+∆E
−
∆

[
p20−

(
E+∆+E

−
∆

)2]

+
8∆2

(
E+2∆+E

−
∆

)

3E+2∆E
−
∆

[
p20−

(
E+2∆+E

−
∆

)2]+

+
8∆2

(
E+∆+E

−
2∆

)

3E+∆E
−
2∆

[
p20−

(
E+∆+E

−
2∆

)2]

⎫
⎬

⎭
. (23)

Moreover, we use in these formulae the notation
(
E±∆
)2
=

(E±)2+ |∆|2,
(
E±2∆

)2
= (E±)2+4|∆|2, E± = E±µ and

E =
√
q2+M2, in whichM is set equal to zero. It is clear

from (22)–(23) that each of the Green functions (21) de-
pends on p20. So the mass squared of the ath scalar (or pseu-
doscalar) meson (a = 1, 2, . . . , 8) is determined by a zero

Fig. 1. The behavior of the scalar meson masses versus µ in the
CFL phase

of the function Γσaσa(p0) (or Γ πaπa(p0)) in the p
2
0 plane.

Moreover, it is evident from (21) that all scalar mesons
with a= 1, 2, . . . , 8 have the same mass in the CFL phase,
thus forming an SU(3) octet of scalar mesons. In a similar
way, all pseudoscalar mesons with a = 1, 2, . . . , 8 form an-
other massive SU(3) octet as well. The masses of the scalar
and pseudoscalar meson octets in the CFL phase are pre-
sented in Figs. 1 and 2, respectively.
In contrast, the two-point Green functions for σ0(x)

and π0(x) mesons take another form. Indeed,

Γ σ0σ0(p0) =
1

2G1
+Q+R , Γ π0π0(p0) =

1

2G1
+Q−R ,

(24)

where

Q=

∫
d3q

(2π)3

⎧
⎨

⎩
32
(
E+∆+E

−
∆

) [
E+∆E

−
∆+E

+E−
]

3E+∆E
−
∆

[
p20−

(
E+∆+E

−
∆

)2]

+
4
(
E+2∆+E

−
2∆

) [
E+2∆E

−
2∆+E

+E−
]

3E+2∆E
−
2∆

[
p20−

(
E+2∆+E

−
2∆

)2]

⎫
⎬

⎭
, (25)

R=

∫
d3q

(2π)3

⎧
⎨

⎩
32∆2

(
E+∆+E

−
∆

)

3E+∆E
−
∆

[
p20−

(
E+∆+E

−
∆

)2]

+
16∆2

(
E+2∆+E

−
2∆

)

3E+2∆E
−
2∆

[
p20−

(
E+2∆+E

−
2∆

)2]

⎫
⎬

⎭
(26)

(in (25)–(26) the quantities E± etc. are taken again at
M = 0). Evidently, these mesons are singlets with respect
to the SU(3) group, and their masses are presented also
in Figs. 1 and 2. It is clear from these figures that none
of the mesons have a zero mass in the CFL phase, i.e.
they are not the Nambu–Goldstone bosons (NG) of this
phase. Moreover, one can see that in the CFL phase there

Fig. 2. The behavior of the pseudoscalar meson masses versus
µ in the CFL phase
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is a singlet–octet mass splitting of pseudoscalar and scalar
mesons, which however vanishes in the∆= 0 limit. Indeed,
if the value ∆= 0 is used in (21)–(26), then the 1PI Green
functions of the octet and singlet mesons are the same, i.e.
the mass splitting is absent.

3.2 The case of chirally broken quark matter phase

Now, let us find the meson masses in the chirally broken
phase of quark matter, i.e. at µ < µc, M ≈ 355MeV, and
∆ = 0. In this case the calculation of the traces over color
and flavor indices in (19)–(20) is greatly simplified, so in
the rest frame, p = (p0, 0, 0, 0), the mesonic Green func-
tions look like (a, b= 0, 1, 2, . . . , 8):

Γ πaπa(p0) = p
2
0

∫
d3q

(2π)3
·

12

E [p20−4E
2]
,

Γ σbσb(p0) = (p
2
0−4M

2)

∫
d3q

(2π)3
·

12

E [p20−4E
2]
.

(27)

(In obtaining (27), the gap equation (see, e.g., [31]) was
used in order to eliminate the coupling constant G1 from
the expressions (19)–(20). Note also that the expres-
sions (27) do not follow directly from (21)–(26) in the
∆ = 0 limit.) Evidently, in the chirally broken phase the
Green functions Γπaπa(p0) turn into zero at p

2
0 = 0 for all

a = 0, 1, . . . , 8. It means that nine massless excitations,
Nambu–Goldstone bosons, do exist in the pseudoscalar
meson sector of the model in the chirally broken phase.
This fact corresponds to a spontaneous symmetry breaking
of the initial SU(3)L×SU(3)R×SU(3)c×U(1)B ×U(1)A
down to the subgroup SU(3)c×SU(3)f ×U(1)B in the chi-
rally broken phase. Moreover, it is clear from (27) that in
this phase there exists a nonet of scalar mesons with mass
≡ 2M ∼ 710MeV.
In summary, we have three main conclusions about

mesons in the framework of the NJL model (1) with three
massless quarks. Firstly, we see that nine pseudoscalar
mesons are NG bosons only in the chirally broken phase
of quark matter. In the CFL phase they cease to be NG
bosons, since now they acquire finite masses (see Fig. 2).
Secondly, the CFL breaking of the symmetry generates the
octet–singlet mass splitting of mesons. Thirdly, in the CFL
phase the mass splitting among scalar and pseudoscalar
mesons occurs differently. Indeed, at µ> µc the mass of the
scalar octet mesons is larger than the mass of the scalar
singlet meson (see Fig. 1), whereas for pseudoscalarmesons
the situation is inverse (see Fig. 2).

4 Diquark masses

4.1 The case of the CFL phase

As follows from the discussion in Sect. 2, all non-zero two-
point 1PI Green functions of diquarks both in the chirally
broken and CFL phases might be determined through the

relation

ΓXY (x−y) =−
δ2S(2)diquarks
δY (y)δX(x)

, (28)

where the effective action S(2)diquarks is given in (14), and
X(x), Y (x)=∆sAA′(x),∆

s∗
BB′(x) orX(x), Y (x)=∆

p
AA′
(x),

∆p∗
BB′
(x). The last restriction again means that scalar and

pseudoscalar diquarks do not mix in accord with parity
conservation.
As shown in our earlier paper [35, 36] for the case of

the two-flavor NJL model, any two-point Green function of
pseudoscalar diquarks differs in the color superconducting
phase from the corresponding Green function of scalar di-
quarks by a term that is proportional to M2, where M is
the dynamical quark mass in this phase. The same is true
for the CFL phase of the NJL model (1). So one can con-
clude that in the CFL phase of the model (1), whereM = 0,
each Green function of pseudoscalar diquarks is equal to
the corresponding Green function of scalar diquarks, e.g.,
Γ∆p

AA′
∆
p∗
BB′
(x−y) = Γ∆s

AA′
∆s∗
BB′
(x−y), etc. Hence, to es-

tablish the spectrum of the diquark excitations of the CFL
phase, it is enough to study the set of scalar diquarks (the
mass spectrum of the pseudoscalar diquark excitations will
be the same in the CFL phase).
Let us consider the two-point 1PI Green functions of

the scalar diquarks. A more detailed analysis of the ef-
fective action (14) shows that in the CFL phase, i.e. at
µ > µc, where M = 0 and ∆ �= 0, eighteen scalar diquarks
(nine ∆sAA′(x) and nine ∆

s∗
AA′(x) fields) may be divided

into four sectors: s(57, 75), s(25, 52), s(27, 72) and s(257).
Each of the sectors s(AA′, A′A), where A �= A′, is com-
posed of∆sAA′(x),∆

s∗
AA′(x),∆

s
A′A(x) and∆

s∗
A′A(x) diquark

fields, whereas the sector s(257) is composed of six fields,
∆s∗22(x), ∆

s∗
55(x), ∆

s∗
77(x), ∆

s
22(x), ∆

s
55(x) and ∆

s
77(x). It

turns out that there is a mixing between diquarks entering
in the same sector, whereas fields from different sectors are
not mixed. (The analogous situation occurs for the set of
pseudoscalar diquarks, which is divided into the nonmixing
sectors p(57, 75), p(25, 52), p(27, 72) and p(257).)

4.1.1 The case of s(AA′, A′A) sectors

Let us first study the mass spectrum of the excitations,
e.g., in the sector s(57, 75). The two-point 1PI Green func-
tions of scalar diquarks from this sector can be obtained
from (14) by the relation (28). In the rest frame, where
p= (p0, 0, 0, 0), the Fourier transforms of these 1PI Green
functions form the following matrix [31]:

Γ 57,75(p0) =⎛

⎜
⎜⎜
⎝

Γ∆s57∆
s
57
(p0) Γ∆s57∆

s∗
57
(p0) Γ∆s57∆

s
75
(p0) Γ∆s57∆

s∗
75
(p0)

Γ∆s∗57∆
s
57
(p0) Γ∆s∗57∆

s∗
57
(p0) Γ∆s∗57∆

s
75
(p0) Γ∆s∗57∆

s∗
75
(p0)

Γ∆s75∆
s
57
(p0) Γ∆s75∆

s∗
57
(p0) Γ∆s75∆

s
75
(p0) Γ∆s75∆

s∗
75
(p0)

Γ∆s∗75∆
s
57
(p0) Γ∆s∗75∆

s∗
57
(p0) Γ∆s∗75∆

s
75
(p0) Γ∆s∗75∆

s∗
75
(p0)

⎞

⎟
⎟⎟
⎠

≡

⎛

⎜
⎝

0 A C 0
B 0 0 C
C 0 0 A
0 C B 0

⎞

⎟
⎠ , (29)
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where A≡ α+p0β, B ≡ α−p0β and

α=

∫
d3q

(2π)3

⎧
⎨

⎩
6E+∆p

2
0−
(
E+∆+E

+
2∆

)2 (
2E+∆+E

+
2∆

)

9E+∆E
+
2∆

[
p20−

(
E+∆+E

+
2∆

)2]

+
4p20+4

(
E+∆
)2
−10∆2

3E+∆

[
p20−4

(
E+∆
)2]

⎫
⎬

⎭

+

∫
d3q

(2π)3
{
E+∆→ E

−
∆, E

+
2∆→E

−
2∆

}
, (30)

β =

∫
d3q

(2π)3

⎧
⎨

⎩
E+

(
E+∆+E

+
2∆

)

3E+∆E
+
2∆

[
p20−

(
E+∆+E

+
2∆

)2]

+
10E+

3E+∆

[
p20−4

(
E+∆
)2]

⎫
⎬

⎭

−

∫
d3q

(2π)3
{
E+→ E−, E+∆→ E

−
∆, E

+
2∆→E

−
2∆

}
,

(31)

C =

∫
d3q

(2π)3

⎧
⎨

⎩
2∆2

(
E+∆+E

+
2∆

)

3E+∆E
+
2∆

[
p20−

(
E+∆+E

+
2∆

)2]

−
10∆2

3E+∆

[
p20−4

(
E+∆
)2]

⎫
⎬

⎭
+

+

∫
d3q

(2π)3
{
E+∆→ E

−
∆, E

+
2∆→E

−
2∆

}
. (32)

(To obtain the above expressions for α and β, one has to
use the gap equation for ∆ [31] in order to eliminate the
coupling constant G2 from corresponding 1PI Green func-
tions.) Evidently, in the case of mixing between particles
the information about their masses should be extracted
from the zeros of the determinant of the matrix, composed
from corresponding 1PI Green functions. So, in our case it
is necessary to study the equation detΓ 57,75(p0) = 0, which
takes the following form:

detΓ 57,75(p0)≡ (AB−C
2)2 =

[
(α−C)(α+C)−p20β

2
]2

= 0 . (33)

In the p20 plane, each zero of this equation defines a mass
squared of a bosonic excitation of the CFL phase ground
state in the s(57, 75) sector. Since this sector contains four
scalar diquarks, one should search for four solutions of (33)
in the p20 plane. Clearly, due to the structure of (33), this
equation admits at least two different solutions (each being
two-fold degenerate), which are given by the zeros of the
expression in the square bracket. It was proved in [31] that
α−C ∼ p20. Hence, the square bracket in (33) becomes zero
at the point p20 = 0. So, in the s(57, 75) sector there are two
massless scalar excitations, i.e. NG bosons.
Note that the expression detΓ 57,75, which is on the left

hand side of (33), is a complex-valued function defined

Fig. 3. The behavior of the mass and the width of the scalar
and pseudoscalar diquark octets versus µ in the CFL phase

on the Riemann manifold composed of an infinitely large
number of sheets of the variable p20. The first (physical)
sheet is the p20 plane with the cut 4∆

2 < p20 along the real
axis. (Just the integrals (30)–(32) supply us with the values
of the function detΓ 57,75 on this physical sheet.) It turns
out that apart from the trivial zero, p20 = 0, there are no
solutions of (33) on this sheet, so there are no stable mas-
sive diquark excitations in the s(57, 75) sector. Using the
procedure of analytical continuation presented in [33, 34]
we could find for each value of the chemical potential µ
a complex point, lying on the second sheet of p20, where
the function detΓ 57,75 turns into zero. Evidently, the real
and imaginary parts of this point correspond to the mass
and width of a resonance. Hence, as was pointed out above,
in the s(57, 75) sector there appears a twice degenerated
excitation of the CFL phase, whose mass and width are
presented in Fig. 3 as functions of µ.
A similar situation occurs in the other four-component

sectors s(25, 52) and s(27, 72). Namely, for both sectors
the 1PI Green function matrix has the form (29). Hence,
in each of these sectors there are two NG bosons as well
as two resonances with the same mass and width, given
in Fig. 3.

4.1.2 Other diquark excitations of the CFL phase

First of all note that there are 36 (18 scalar and 18 pseu-
doscalar) diquark fields (3) in our model. So, there should
exist at least 36 elementary diquark excitations both in
the chirally broken quark matter phase and in the CFL
one. The masses of 12 (six of them are NG bosons, the
other six are massive resonances) scalar diquark excita-
tions of the CFL phase were obtained in the previous
section.
As is clear from the discussion made at the beginning

of Sect. 4.1, the mass spectrum of another 12 particles,
which are the CFL ground state excitations in the pseu-
doscalar diquark sectors p(57, 75), p(25, 52) and p(27, 72),
is identical to the mass spectrum of the corresponding
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scalar diquarks from the sectors s(AA′, A′A), where A �=
A′ (see Sect. 4.1.1). Hence, in addition to the scalar exci-
tations found in the previous section, in the CFL phase
there exist six pseudoscalar NG bosons as well as six pseu-
doscalar resonances, whose mass and width are presented
in Fig. 3.
Concerning the CFL ground state diquark excitations

from the sectors s(257) and p(257), we should note that
the corresponding 1PI Green functions form in the rest
frame of the momentum representation a non-trivial 6×
6 matrix Γ 257(p0), which is the same both for the s(257)
and p(257) diquark sectors, with a rather complicated
determinant,

detΓ 257(p0) = [(P −W )(Q−Z)− (R−T )
2]2

×{(2T +R)2− (2W +P )(2Z+Q)} .
(34)

An exact expression for the matrix Γ 257(p0) as well as for
the 1PI Green functions P,Q,R, . . . from (34) are pre-
sented in our previous paper [31], where it was also shown
that the equation detΓ 257(p0) = 0 has a three-fold degen-
erated solution p20 = 0. So in the diquark sectors s(257)
and p(257) there are six (three scalar and three pseu-
doscalar) NG excitations, and the initial NJL model (1) as
a whole has 18 NG bosons in the mass spectrum of the CFL
phase.
A more detailed consideration of the quantities P,Q,

R, . . . shows that P −W = A, Q−Z = B, and R−T = C,
where A,B,C are given in (29). So, the square brackets in
(34) are no more than detΓ 57,75(p0) presented in (33).

4 As
a consequence, we see, e.g., that in the s(257) sector of the
model there exist two massive resonances with the same
mass and width, depicted in Fig. 3. Moreover, their mass
and width are identical to those for the massive resonances
from all scalar diquark sectors s(AA′, A′A). So, all these
scalar diquark resonances form in total an octet with re-
spect to the SU(3)L+R+c group. A similar situation is valid
for the pseudoscalar diquarks, where in the mass spectrum
there is an octet of CFL phase excitations with the same
mass and width (see Fig. 3).
Unfortunately, we did not manage to find non-trivial

diquark excitations of the CFL phase from the sectors
s(257) and p(257), corresponding to a zero of the expres-
sion F (p20) ≡ (2T +R)

2− (2W +P )(2Z+Q), which ap-
pears in the braces of (34). (Evidently, both excitations are
SU(3)L+R+c singlets.) The matter is that F (p

2
0) is an ana-

lytical function on a rather complicated Riemann manifold
of the variable p20. On its first Riemann sheet there is only
a trivial zero, p20 = 0 (which corresponds to the NG bosons,
as was discussed above). Due to a rather complicated struc-
ture of the function F (p20), we were not able to perform its
continuation onto the second Riemann sheet and get any
information about the mass and width of the remaining
SU(3)L+R+c singlet diquark resonances from the sectors
s(257) and p(257).

4 This fact was not observed in [31], leading to an incorrect
statement about the multiplet structure of the massive diquark
excitations of the CFL phase.

4.2 The case of the chirally broken phase
of quark matter

In this phase, i.e. at µ < µc, the gap ∆ vanishes, so the
matrix elements S12(x−y) and S21(x−y) (see (B.2) and
(B.3), respectively) of the quark propagatormatrix S0 van-

ish too. As a consequence, the expression S
(2)
diquarks of the

two-point 1PI Green functions for the diquark fields is sim-
plified in the chirally broken phase:

S(2)diquarks =−

∫
d4x
∆sAA′∆

s∗
AA′ +∆

p
AA′
∆p∗
AA′

4G2

+
i

2
Trscfx {S11KS22K

∗} . (35)

Using this expression in (28), it is possible to get for each
fixed A,A′ = 2, 5, 7:

Γ∆s∗
AA′

∆s
AA′
(x−y) =

δ(x−y)

4G2

+
i

2
Trscf

{
S11(x−y)γ

5τAλA′S22(y−x)γ
5τAλA′

}
,

(36)

Γ∆p∗
AA′

∆
p

AA′
(x−y) =

δ(x−y)

4G2

−
i

2
Trscf {S11(x−y)τAλA′S22(y−x)τAλA′} . (37)

In addition, the following relations are valid:

Γ∆s
AA′

∆s∗
AA′
(x−y) = Γ∆s∗

AA′
∆s
AA′
(y−x) ,

Γ∆p
AA′

∆
p∗
AA′
(x−y) = Γ∆p∗

AA′
∆
p

AA′
(y−x) , (38)

and other two-point diquark 1PI Green functions are iden-
tically equal to zero in the chirally broken phase. Using the
expressions (B.5)–(B.6) for the fermion Green functions,
one can easily perform the Tr operation over color and fla-
vor indices in (36)–(37). Then, in the rest frame of the
momentum representation, i.e. at p= (p0, 0, 0, 0), we have
for each fixed pair of A,A′ = 2, 5, 7:

Γ∆s∗
AA′

∆s
AA′
(p0) =

1

4G2
−16

∫
d3q

(2π)3
E

4E2− (p0+2µ)2

≡
1

4G2
−Φs(ε) , (39)

Γ∆p∗
AA′

∆
p

AA′
(p0) =

1

4G2
−16

∫
d3q

(2π)3
q2

E

1

4E2− (p0+2µ)2

≡
1

4G2
−Φp(ε) , (40)

where ε= (p0+2µ)
2. Moreover, it follows from (38) that

Γ∆s
AA′

∆s∗
AA′
(p0) = Γ∆s∗

AA′
∆s
AA′
(−p0), Γ∆p

AA′
∆
p∗
AA′
(p0) =

Γ∆p∗
AA′

∆
p

AA′
(−p0). From the above general consideration

of the diquark Green functions in the chirally broken
quark matter phase we see that i) scalar diquarks do not
mix with pseudoscalar ones; ii) each scalar ∆sAA′ or pseu-
doscalar∆pAA′ diquark field is mixed only with its complex
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conjugated one. Hence, for each pair of scalar diquarks
∆sAA′ ,∆

s∗
AA′ (or pseudoscalar diquarks ∆

p
AA′
,∆p∗
AA′
, re-

spectively) we have a simple 2× 2 matrix Γ
s

AA′(p0) of

their 1PI Green functions (it is a 2× 2 matrix Γ
p

AA′(p0)
for the system of two pseudoscalar diquarks ∆p

AA′
,∆p∗
AA′
,

respectively):

Γ
s

AA′(p0) =

(
0 Γ∆s

AA′
∆s∗
AA′
(p0)

Γ∆s∗
AA′

∆s
AA′
(p0) 0

)

,

Γ
p

AA′(p0) =

(
0 Γ∆p

AA′
∆
p∗
AA′
(p0)

Γ∆p∗
AA′

∆
p

AA′
(p0) 0

)

.

(41)

Actually, due to the relations (39)–(40), these matrices do
not depend onA,A′ = 2, 5, 7, i.e. they are the same for each
pair of scalar ∆sAA′ ,∆

s∗
AA′ or pseudoscalar ∆

p
AA′
,∆p∗
AA′
di-

quarks. Obviously, to obtain the diquark excitations of the
chirally broken phase, it is sufficient to solve the equa-
tions detΓ

s

AA′(p0) = 0 and detΓ
p

AA′(p0) = 0 or the follow-
ing ones:

Γ∆s∗
AA′

∆s
AA′
(p0)≡

1

4G2
−Φs(ε) = 0 , (42)

Γ∆p∗
AA′

∆
p

AA′
(p0)≡

1

4G2
−Φp(ε) = 0 . (43)

In the present consideration we restrict ourselves to look-
ing only for stable diquark excitations of the chirally bro-
ken phase.
Note that the functions Φs(ε) and Φp(ε) are analytical

in the whole complex ε plane, except for the cut 4M2 < ε
along the real axis. (In general, these functions are de-
fined on complex Riemann surfaces that are to be de-
scribed by several sheets. The integral representations for
Φs,p(ε), given in (39)–(40), define its values on the first
sheet only. To find values of Φs,p(ε) on the rest of the Rie-
mann surfaces, a special procedure of analytical continu-
ation is needed (see, e.g., in [33, 34]).) Let us denote by
εs0 and ε

p
0 the solutions of (42) and (43), respectively. Of

course, they depend on the coupling constant G2 of the
diquark channel. Obviously, the stable diquark excitation
corresponds to the root εs0 that lies on the first Riemann
sheet and obeys the constraint 0< εs0 < 4M

2. It is fulfilled
only ifH∗ <G2 <H

∗∗, whereH∗ andH∗∗ are defined by

H∗ ≡
1

4Φs(4M2)

=
π2

4
[
Λ
√
M2+Λ2+M2 ln((Λ+

√
M2+Λ2)/M)

] ,

H∗∗ ≡
1

4Φs(0)

=
π2

4
[
Λ
√
M2+Λ2−M2 ln((Λ+

√
M2+Λ2)/M)

]

=
3G1
2
. (44)

(Actually, the last equality in (44), i.e.H∗∗ = 3G1/2, is due
to the gap equation forM �= 0.) In this case εs0 is the mass

squared of the stable scalar diquark in the vacuum, i.e. at
µ= 0. For a rather weak interaction in the diquark chan-
nel (G2 <H

∗), εs0 runs onto the second Riemann sheet, and
unstable scalar diquark modes (resonances) appear. Unlike
this, a sufficiently strong interaction in the diquark channel
(H∗∗ <G2) pushes ε

s
0 towards the negative semi-axis of the

first Riemann sheet, i.e. in this case εs0 ≡ (M
o
D)
2 < 0, where

MoD is the mass of the diquark in the vacuum. The latter
indicates a tachyon singularity in the scalar diquark propa-
gator, being evidence that the SU(3)L+R×SU(3)c×U(1)B
symmetric ground state of the chirally broken phase is not
stable (in this case there arises a deeper ground state, cor-
responding to another phase of the model, the CFL phase).
A similar observation was made in the framework of a two-
flavor NJL model, where the chirally broken quark matter
phase is unstable if there is a sufficiently strong interaction
in the diquark channel [33–36,43, 44]. Indeed, at a very
large G2, as has been shown in [45–47], the color symme-
try is spontaneously broken even at a vanishing chemical
potential.
Let us ignore for a moment the scalar diquark sector

and perform a similar analysis, based on (43), for pseu-
doscalar diquark excitations. Then, pseudoscalar diquarks
are stable excitations of the chirally broken phase only, if
the constraint H∗∗ <G2 < H

∗∗∗ is fulfilled, where H∗∗ is
given in (44) and

H∗∗∗ =
1

4Φp(0)
=
π2

4
Λ
√
M2+Λ2

/[
3M2Λ2+Λ4

−3M2Λ
√
M2+Λ2 ln((Λ+

√
M2+Λ2)/M)

]
.

(45)

(In this case the solution εp0 of (43) lies inside the interval
0 < εp0 < 4M

2.) It turns out that at G2 < H
∗∗ these ex-

citations are unstable, whereas at H∗∗∗ <G2 a tachyonic
instability of the chirally broken phase appears.
Now, combining the above separate considerations of

the scalar and pseudoscalar diquark excitations, we may
conclude that at a rather weak interaction in the diquark
channel (G2 <H

∗) both scalar and pseudoscalar diquark
excitations of the chirally broken phase are resonances. If
H∗ <G2 <H

∗∗, then, in addition to mesons, the scalar di-
quarks are stable particles in this phase (the pseudoscalar
diquarks are unstable as before). Note that the initial
massless NJL model (1) is parametrized by the three in-
dependent parameters Λ, G1 and G2. So one may expect
that the estimates H∗ and H∗∗ from (44) depend on Λ
and G1. However, as was pointed out just after (44), the
quantity H∗∗ ≡ 1.5G1 does not really depend on the cut-
off parameter Λ. In contrast, H∗ depends both on Λ and
G1. In particular, since for the parameter set accepted in
Sect. 2 we haveM ≈ 0.355GeV, one can present in this case
the quantityH∗ in the following form:H∗ ≈ 0.660G1.
Having a root εs0 ≡ (M

o
D)
2 of (42), one can find in the

caseH∗ <G2 <H
∗∗ two zeros (with respect to the variable

p0) of the 1PI Green function Γ∆s∗
AA′

∆s
AA′
(p0) as well as

four zeros of the equation detΓ
s

AA′(p0) = 0. They provide
us with the following two different masses squared of the
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excitations in each two scalar∆sAA′ ,∆
s∗
AA′ diquark system:

(M∆)
2 = (MoD−2µ)

2 , (M∆∗)
2 = (MoD+2µ)

2 .
(46)

In particular, for our choice of the model parameters (see
Sect. 2) we have MoD ≈ 1.968M , where M ≈ 0.355GeV.
Furthermore, if G2→H∗+ then M

o
D → 2M , if G2→H

∗∗
−

then MoD→ 0. Since there are nine scalar ∆
s
AA′ diquarks

as well as nine scalar ∆s∗AA′ antidiquarks in our model, we
relate M∆ in (46) to the mass of the diquark nonet with
the baryon number B = 2/3 and M∆∗ to the mass of the
antidiquark nonet with B =−2/3. The difference between
diquark and antidiquark masses in (46) is explained by the
absence of a charge conjugation symmetry in the presence
of a chemical potential µ.
Finally, if H∗∗ < G2, then a SU(3)L+R× SU(3)c×

U(1)B symmetric ground state, i.e. the chirally broken
phase of quark matter, is not allowed to exist in the model.
The matter is that in this case tachyon singularities of the
scalar diquark propagator alone (at H∗∗ <G2 <H

∗∗∗), or
both of the scalar and pseudoscalar diquark propagators
(atH∗∗∗ <G2) appear. As a result, in this case the ground
state of the CFL phase is always deeper in comparison with
the ground state of the chirally broken phase. So, only the
CFL phasemay be realized in the model at sufficiently high
values of the coupling constant G2 and arbitrary values of
µ. As a consequence, one must expect that at G2→H∗∗−
the critical value µc of the chemical potential tends to zero.
The fact that at G2→H∗∗− the diquark massM

o
D tends to

zero may be considered as a precursor, which appears in
the chirally broken phase, of the spontaneous breaking of
the SU(3)c symmetry, taking part at G2 =H

∗∗.

5 Summary and discussion

In the present paper we have continued the investigation,
started in our previous paper [31], of the bosonic excitations
(mesons anddiquarks) of the dense quarkmatter, composed
ofu,d, and squarks, at zero temperature.The consideration
is performed in the framework of the massless NJL model
(1),omittingthe ’tHooftsix-quark interactionterm, for sim-
plicity. In this case, the initial symmetry group of themodel,
i.e. SU(3)L×SU(3)R×SU(3)c×U(1)B ×U(1)A does con-
tain the axial U(1)A subgroup. As a result, we have shown
for themodel parameter set accepted in Sect. 2 that at suffi-
ciently low values of µ, µ < µc ≈ 330MeV, the chirally bro-
ken quark matter phase with SU(3)L+R×SU(3)c×U(1)B
ground state symmetry is realized and nine massless pseu-
doscalarmesons (whichare theNGbosons),π±,π0,K0, K̄0,
K±, η8 and η

′, appear. (In massless QCD, where U(1)A is
broken on the quantum level, or inNJLmodels with ’tHooft
interaction the η′meson is not aNGboson.)
At µ > µc the original symmetry is spontaneously bro-

ken down to SU(3)L+R+c, and the CFL phase does occur.
In this case, in accordance with the Goldstone theorem,
eighteen NG bosons must appear in the mass spectrum of
the model (1). (In contrast, due to the absence of the un-

physical U(1)A symmetry, only seventeen NG bosons must
appear in massless QCD.) Considering 1PI Green func-
tions, we have found nine NG bosons in the sector of scalar
diquark excitations. Eight of them have to be considered
as non-physical, since in real QCD they supply masses to
gluons by the Anderson–Higgs mechanism. The remaining
scalar NG boson corresponds to spontaneous breaking of
the baryon U(1)B symmetry. The other nine NG bosons
are no more pseudoscalar mesons, but now the massless ex-
citations in the pseudoscalar diquark sector of the model.
All that, i.e. the NG boson structure of the model (1), is the
main result of the paper [31], which is also confirmed in the
present considerations.
Besides NG diquarks, we have proved in [31] the ex-

istence of massive diquark excitations in the CFL phase.
However, a detailednumerical analysis of thediquarkmasses
versus chemical potential µ was not done there. In the
present paper we have argued that all massive diquark ex-
citations of the CFL phase are resonances, since the cor-
responding singularities of their Green functions in mo-
mentum space lie on the second energy Riemann sheet.
Moreover, they form scalar and pseudoscalar SU(3)L+R+c
octets and singlets. The mass and width of the scalar and
pseudoscalar diquark resonances from octets versus µ have
been obtained numerically (see Fig. 3). They are evaluated
around230MeV and 50MeV, respectively, i.e. these quanti-
ties are at least five times smaller, than the mass and width
of the scalar diquark resonance in the color superconduct-
ing quarkmatter composed of u and d quarks [33–38]. (Due
to numerical difficulties, we were not able to evaluate the
parameters of the abovementionedmassive scalar andpseu-
doscalar singlet diquark resonances of the CFL phase; how-
ever, we guess that their masses are of the same order in
magnitude as the masses of the diquark octets.)
To get a more complete view about the diquark proper-

ties in the framework of the NJL model (1), we have con-
sidered their masses in the chirally broken phase of quark
matter, too. It follows from our analysis that i) at suffi-
ciently strong interaction in the diquark channel, i.e. at
G2 >H

∗∗ = 1.5G1, the existence of this phase is prohibited
in the framework of the NJL model (1); ii) depending on
the coupling constantG2, scalar and pseudoscalar diquarks
have different properties in this phase. Indeed, atG2 <H

∗,
where H∗ is given in (44), both types of diquarks are res-
onances. However, at H∗ <G2 <H

∗∗ the pseudoscalar di-
quarks remain resonances, whereas the scalar diquarks are
yet stable particles. As this takes place, there is a splitting
between the scalar diquark and scalar antidiquark masses
(see (46)), which is explained by the violation of the charge
conjugation symmetry in the presence of a chemical poten-
tial. (Of course, in the chirally broken phase all observable
particles are colorless, so one should expect that colored
diquarks are confined within baryons (see e.g. [48–50]).
Thus, one may look at our investigation of the diquark
masses in the chirally broken phase as an indication of the
existence of rather strong quark–quark correlations inside
baryons, which might help in a better understanding of
baryon dynamics.)
Finally, we have considered in the model (1) the masses

of mesons that are stable particles in both phases. In the
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chirally broken phase, i.e. at µ < µc, all nine pseudoscalar
mesons areNGbosons, whereas the nine scalarmesons have
equal mass ≡ 2M ∼ 710MeV (for the parameter set of the
model accepted in Sect. 2). In the CFL phase, i.e. at µ > µc,
these nonet representations of mesons, reducible with re-
spect to the SU(3)L+R+c group, are decomposed into the
octet and singlet representations, each with its own mass.
The reason for this octet–singlet mass splitting of mesons
is just the color–flavor locked symmetry breaking taking
place at µ > µc. In the CFL phase the masses of both types
of mesons vary in the interval 300–900MeV, when µ varies
from 330MeV to 500MeV (see Figs. 1 and 2). However, the
mass splitting among the scalar and pseudoscalar mesons
occurs in differentways. Indeed, as is easily seen fromFig. 1,
the mass of the scalar octet mesons is larger than the mass
of the scalar singletmeson,whereas for pseudoscalarmesons
the opposite situation takes place (see Fig. 2).
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Appendix A: Some formulae

The present appendix contains some useful formulae em-
ployed in the text.

i) Determinant:

det

(
A , B
C , D

)
= det[−CB+CAC−1D]

= det[DA−DBD−1C] . (A.1)

ii) Inverse matrix:

(
A , B
C , D

)−1
=

(
C−1DL , −N
−L , B−1AN

)

=

(
L̄ , −A−1BN̄

−D−1CL̄ , N̄

)
, (A.2)

where

L= [AC−1D−B]−1 , N = [DB−1A−C]−1 ,

L̄= [A−BD−1C]−1 , N̄ = [D−CA−1B]−1 .
(A.3)

iii) Variational derivatives: let A,B be some operators in
the coordinate space with matrix elements A(x, y) ≡
A(x− y) and B(x, y) ≡ B(x− y), respectively. More-
over, let σ(x) and φ(x) be some fields. Then,

Tr{AσBφ} ≡

∫
dxdydzduA(x, z)σ(z)δ(z−y)

×B(y, u)φ(u)δ(u−x)

=

∫
dxdyA(x, y)σ(y)B(y, x)φ(x) .

(A.4)

It follows from (A.4) that

Γ (x−y)≡
δ2Tr{AσBφ}

δσ(y)δφ(x)

=A(x, y)B(y, x) =A(x−y)B(y−x) .

(A.5)

iv) Fourier transformations: for arbitrary function F (z) it
is possible to define the Fourier transformationF (p) by
the relation

F (p) =

∫
d4zF (z)eipz ,

F (z) =

∫
d4p

(2π)4
F (p)e−ipz . (A.6)

Taking these relations into account, one obtains from
(A.5)

Γ (p) =

∫
d4q

(2π)4
A(q+p)B(q) , (A.7)

where A(q) and B(q) are Fourier transformations of
the functions A(x) and B(x), respectively.

Appendix B: Quark propagator matrix

In the Nambu–Gorkov representation the inverse quark
propagatormatrix S−10 is given in (7). Using the techniques
elaborated in [32–40], it is possible to obtain the following
expressions for the matrix elements of the quark propaga-

tor matrix S0 ≡

(
S11, S12
S21, S22

)
:

S11(x−y)

=

∫
d4q

(2π)4
e−iq(x−y)

×

{
q0−E+

q20−
(
E+B∆

)2 γ
0Λ̄++

q0+E
−

q20−
(
E−B∆

)2 γ
0Λ̄−

}

,

(B.1)

S12(x−y)

=−i∆B

∫
d4q

(2π)4
e−iq(x−y)

×

{
1

q20−
(
E+B∆

)2 γ
5Λ̄−+

1

q20−
(
E−B∆

)2 γ
5Λ̄+

}

,

(B.2)

S21(x−y)

=−i∆∗B

∫
d4q

(2π)4
e−iq(x−y)

×

{
1

q20−
(
E+B∆

)2 γ
5Λ̄++

1

q20−
(
E−B∆

)2 γ
5Λ̄−

}

,

(B.3)
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S22(x−y)

=

∫
d4q

(2π)4
e−iq(x−y)

×

{
q0+E

+

q20−
(
E+B∆

)2 γ
0Λ̄−+

q0−E−

q20−
(
E−B∆

)2 γ
0Λ̄+

}

,

(B.4)

where M =
√
2
3σ and Λ̄± =

1
2 (1±

γ0(γq−M)
E

). Moreover,

(E±B∆)
2 = (E±)2+ |∆|2B2, E± = E±µ, E =

√
q2+M2

and B =
∑
A=2,5,7 τAλA. (In these and other similar ex-

pressions, q0 is a shorthand notation for q0+iε · sgn(q0),
where the limit ε→ 0+ must be taken at the end of all cal-
culations. This prescription correctly implements the role
of µ as the chemical potential and preserves the causality
of the theory.) It is clear from (B.1)–(B.4) that all color
and flavor dependences in the matrix elements S11, S12, S21
and S22 arise only due to the matrix B. It is a 9×9 ma-
trix in the nine-dimensional space c×f , which is the dir-
ect production of the color and flavor spaces. Note that
in the chirally broken quark matter phase, where ∆ = 0,
M �= 0, the expressions for the matrix elements (B.1)–(B.4)
have a simpler form. Namely, it is clear that in this phase
S12(x−y) = S21(x−y) = 0 and

S11(x−y) = 1c×1f ×

∫
d4q

(2π)4
e−iq(x−y)

×

{
γ0Λ̄+

q0+E+
+
γ0Λ̄−

q0−E−

}
, (B.5)

S22(x−y) = 1c×1f ×

∫
d4q

(2π)4
e−iq(x−y)

×

{
γ0Λ̄−

q0−E+
+
γ0Λ̄+

q0+E−

}
, (B.6)

i.e. the matrix elements (B.5)–(B.6) are proportional to the
unit matrices both in the color and flavor spaces.
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